2010 Science Standards of Learning

	Introduction ¹	Proficiency	Advanced Mastery					(GRAD	DE/CC	OURS	E				
OB	SERVING			K	1	2	3	4	5	6	LS	PS	ES	BI	СН	PH
Basic	characteristics or properties of	f objects are identified by	direct observation. (K.1a)			1										
Obse	rvations are made from multip	le positions to achieve dif	ferent perspectives. (K.1b)													
The s	enses are used to observe diffe	erences in physical proper	ties. (1.1a)													
Obse repea	rvations are made from multip ted to ensure accuracy. (1.1b)	le positions to achieve a v	ariety of perspectives and are													
Simp	le tools are used to enhance of															
Obse	rvations and predictions are m	ned. (2.1a)														
Obse	rvation is differentiated from p	personal interpretation. (2.	1b)													
Obse	rvations are repeated to ensure	e accuracy. (2.1c)														
Obse	rvations are made and are repe	eated to ensure accuracy. (3.1a)				2									
Disti	nctions are made among obser	vations, conclusions, infer	ences, and predictions. (4.1a)													
Obse	rvations are made involving fi	ne discrimination betweer	similar objects and organisms. (6.1a)									3				
Obse	rvations of living things are re	corded in the lab and in th	e field. (BIO.1a)											4		
Instru temp	iments are selected and used to erature, heat exchange, energy	extend observations and transformations, motion,	measurements of mass, volume, fields, and electric charge. (PH.1b)													5

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

2. The standard segment 3.1a repeats the previous segment, 2.1c, which introduces the disposition of repeated trials. Therefore this is not a newly introduced skill, and grade-appropriate proficient performance for this basic skill is expected by the end of third grade.

3. Fine discrimination is somewhat discipline specific depending on the complexity of the subject matter and the experiences of the observer. For example, discerning the difference between two somewhat similar rocks (5.5b) or organisms (5.7a) requires honing observational skills (practice) and deeper knowledge of specific descriptive terminology.

4. The skill was introduced in standard segment 6.1 a. The skill is used in a discipline-specified context in this high school course, with the expectation that students will have rigorous inquiry experiences in the field/laboratory setting, building work and postsecondary education readiness.

5. The additional context of measuring fields and electric charges, usually reserved for high school physics, qualifies this as an introduction-level skill.

	Introduction ¹	Advanced Mastery					(GRAD	DE/CO	OURS	E							
CLA	ASSIFYING AND	SEQ	UENCING			K	1	2	3	4	5	6	LS	PS	ES	BI	СН	PH
A set	of objects is sequenced ac	cording	g to size. (K.1c)			1												
A set	of objects is separated into	o two g	roups based on a sing	gle phys	ical characteristic. (K.1d)													
Objec	ets or events are classified	istics or properties. (1.1c)																
Two	wo or more characteristics or properties are used to classify items. (2.1d)																	
Object subse	ts with similar characteris ts. (3.1c)	tics or	properties are classifi	ed into	at least two sets and two													
Natur	al events are sequenced ch	nronolo	gically. (3.1d)															
Objec	Objects or events are classified and arranged according to characteristics or properties. (4.1b)									2								
Items	such as rocks, minerals, a	arious classification keys. (5.1a)																
A cla	ssification system is devel	oped b	ased on multiple attri	butes. (l	LS.1b)													

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

2. This standard segment is introduced as 1.1c and is repeated here because of its crucial place in the classification skills hierarchy.

	Introduction ¹	Advanced Mastery					(GRAD	DE/CC	OURS	E					
CC	OMMUNICATING			K	1	2	3	4	5	6	LS	PS	ES	BI	CH	PH
Obs	ervations are recorded. (K.1h)					1										
Pict	ure graphs are constructed. (K.1i)															
Obje	ects are described both pictorially	and verbally. (K.1k)														
Obs pict	ervations and data are recorded, a ures, written statements, and num	nalyzed, and communicat	ted orally and with simple graphs,													
Data	are collected and recorded, and l	bar graphs are constructed	l using numbered axes. (2.1h)													
Obs	ervations and data are communication	ated. (2.1k)														
Data	a are gathered, charted, graphed, a	and analyzed. (3.1h)														
Data	a are communicated. (3.1k)															
Data	are collected, recorded, analyzed	l, and displayed using bar	and basic line graphs. (4.1i)													
Data	are communicated with simple g	graphs, pictures, written st	atements, and numbers. (4.1k)													
Data and	are collected, recorded, analyzed metric measurements. (5.1g) (And	d, and communicated usin alvzing Data)	g proper graphical representations													
Data (Me	are collected, recorded, analyzed as <i>asuring</i>)	l, and reported using metr	ic measurements and tools. (6.1g)													
Data	a are analyzed and communicated	through graphical represe	entation. (6.1h) (Analyzing Data)													
Data	are organized into tables showin	g repeated trials and mean	ns. (LS.1a)													
Data pred	are organized, communicated th ictions. (LS.1h)	rough graphical represent	ation, interpreted, and used to make													
Nun	bers are expressed in scientific n	otation where appropriate	e. (PS.1e)									2				
Data of tr	tables showing the independent ials are constructed and interprete	and dependent variables, ed. (PS.1g) (Analyzing Da	derived quantities, and the number <i>ita</i>)													
Data data	tables for descriptive statistics sl set, and the number of repeated t	of central tendency, the range of the interpreted. (PS.1h) (<i>Analyz. Data</i>)									3					
Freq (PS.	uency distributions, scatterplots, 1i)	line plots, and histograms	are constructed and interpreted.									4				

Introduction ¹	Advanced Mastery					(GRAD	DE/CC	OURS	E					
COMMUNICATING			K	1	2	3	4	5	6	LS	PS	ES	BI	CH	PH
Experimental results are presented	in appropriate written form	. (PS.11)													
Scales, diagrams, charts, graphs, ta interpreted. (ES.1c) (<i>Modeling, An</i>	bles, imagery, models, and <i>alyzing Data</i>)	profiles are constructed and										5			
Appropriate technology including of gathering and analyzing data, compexperimental conditions. (BIO.1i)	computers, graphing calcul municating results, modelir (<i>Modeling, Analyzing Data</i>	ators, and probeware, is used for g concepts, and simulating													
Research utilizes scientific literatur	re. (BIO.1j)														
Accurate recording, organization, a (Analyzing Data)	and analysis of data through	repeated trials. (CH.1e)													
Use of appropriate technology incl gathering data, communicating rest (<i>Modeling</i>)	uding computers, graphing ults, and using simulations	calculators, and probeware, for to model concepts. (CH.1h)												6	
Construction and defense of a scien	ntific viewpoint. (CH.1i)														
The components of a system are de	efined. (PH.1a)														
Information is recorded and presen	ted in an organized format.	(PH.1c)													
Appropriate technology, including gathering and analyzing data and c	computers, graphing calcul ommunicating results. (PH	ators, and probeware, is used for 1g) (Analyzing Data)													
A description of a physical problem solution. (PH.2a)	n is translated into a mathe	natical statement in order to find a													
Construction and defense of a scien	ntific viewpoint. (PH.3e)														

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

2. Scientific notation is introduced in the Grade 7 Mathematics SOL, 7.1b (2009).

3. Measures of central tendency are introduced in the Grade 5 Mathematics SOL, 5.16a.

4. Histograms are introduced in the Grade 7 Mathematics SOL, 7.11a, 7.11b.

5. Imagery and profiles are introduced in this segment.

6. The Computer Technology SOL introduces the use of hand-held technologies in the middle grades, e.g., C/T 6-8.6 and 6-8.8.

	Introduction ¹	Proficiency	Advanced Mastery	tery GRADE/COURSE												
ME	ASURING			K	1	2	3	4	5	6	LS	PS	ES	BI	CH	PH
Nons	tandard units are used to mean	sure the length, mass, and vo	lume of common objects. (K.1e)		1											
Leng	th, mass, volume, and temper	ature are measured using not	nstandard units. (1.1e)													
Leng using	th, volume, mass, and temper g the proper tools. (2.1e)	ature are measured in metric	units and standard English units													
Time	is measured using the proper	tools. (2.1f)														
Leng units	th, volume, mass, and temper- using proper tools and technic	ature are estimated and meas ques. (3.1e)	ured in metric and standard English													
Time	is measured to the nearest mi	nute using proper tools and	techniques. (3.1f)													
Appi metri	opriate instruments are selected c units. (4.1c)	ed and used to measure leng	h, mass, volume, and temperature in													
Аррі	opriate instruments are selected	time. (4.1d)														
Estin in me	nates are made and accurate metric units using proper tools.	easurements of length, mass (5.1b)	, volume, and temperature are made													
Estin	nates are made and accurate m	easurements of elapsed time	e are made using proper tools. (5.1c)													
Preci	se and approximate measuren	nents are recorded. (6.1b)														
Data tools	are collected, recorded, analy . (6.1g) (<i>Communicating</i>)*	zed, and reported using appr	opriate metric measurements and													
Tripl prob	e beam and electronic balance eware are used to gather data.	es, thermometers, metric rule (LS.1c)	rs, graduated cylinders, and													
Leng	th, mass, volume, density, ten	nperature, weight, and force	are accurately measured. (PS.1b)									2				
Conv	versions are made among metr	ic units, applying appropriat	e prefixes. (PS.1c)													
Tripl and s	e beam and electronic balance pring scales are used to gathe	es, thermometers, metric rule r data. (PS.1d)	rs, graduated cylinders, probeware,													
Volu in ele	me, area, mass, elapsed time, evation/depth are calculated ut	direction, temperature, press ilizing the most appropriate	ure, distance, density, and changes tools. (ES.1a)										3			
Math and p	ematical manipulations inclue proportion, significant digits, a	ding SI units, scientific notat and dimensional analysis. (C	ion, linear equations, graphing, ratio H.1g) (<i>Data Analysis</i>)													
Instr	uments are selected and used t	o extend observations and n	easurements. (PH.1b)													

	Introduction ¹		Proficiency		Advanced Mastery					C	GRAD	E/CO	URS	E				
ME	MEASURING						1	2	3	4	5	6	LS	PS	ES	BI	СН	PH
The li figure	The limitations of measured quantities are recognized through the appropriate use of significant igures or error ranges; (PH.1e)																	

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

2. A quantitative concept of force is introduced to concepts measured.

3. The concept of contours for measuring elevation and depth is introduced. High-performing and advanced students should have some experience with contours by the end of sixth grade.

2010 Science Standards of Learning

Introduction ¹	Proficiency	Advanced Mastery					G	RAD	E/CO	URSE	E				
PREDICTING			K	1	2	3	4	5	6	LS	PS	ES	BI	СН	PH
Observations and predictions are n	nade for an unseen member	in a sequence of objects. (K.1f)													
Predictions are made based on patt	terns of observations. (1.1h)														
Predictions are formulated using a	redictions are formulated using a variety of sources of information. (3.1b)														
Predictions and inferences are mad sources. (4.1e)	Predictions and inferences are made, and conclusions are drawn based on data from a variety of sources. (4.1e)														
Predictions are made using pattern (5.1h)	s from data collected, and si	mple graphical data are generated.													
A method is devised to test the val	rences. (6.1e)								1						
Data are organized, communicated make predictions. (LS.1h)	through graphical represent	tation, interpreted, and used to								2					
Interpolated, extrapolated, and ana <i>Data</i>)*	lyzed trends are used to mak	ke predictions. (PH.2d) (Analyzing													3

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

2. All the prerequisite skills are found in earlier grades in this scope and sequence grid and in the "Communicating" grid.

3. The operations defining "interpolation" and "extrapolation" are formally presented in Algebra I.

2010 Science Standards of Learning

	Introduction ¹	Proficiency		Advanced Mastery					(GRAD	DE/CC	OURS	E				
HY	POTHESIZING				K	1	2	3	4	5	6	LS	PS	ES	BI	C H	PH
Ques	tion is developed and prediction	s are made from one or	more of	oservations. (K.1g)				1									
Ques	tion is developed from one or m	ore observations. (1.1g)														
Ques	tions are developed to formulate	e hypotheses. (3.1g)															
Нуро	Hypotheses are developed as cause and effect relationships. (4.1h)																
Нуро	theses are formed from testable	questions. (5.1d)															
Нуро	theses are stated in ways that id	entify the independent	and depe	endent variables. (6.1d)													
Varia (Vari	bles are controlled to test hypot ables/Experimentation)*	heses, and trials are rep	eated. (I	_S.1g)								2					
Hypo (BIO	(Variables/Experimentation)* Hypotheses are formulated based on direct observations and information from scientific literat (BIO.1b)														3		
Diffe	rentiation is made between a sci	aw. (BIO.1k)															
Analy	(ze) scientific sources to develo	es. (PH.3a)															

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

Constants and manipulating variables are introduced in 4.1g and 6.1f, respectively. Precursor skills are introduced in 1.1g and 3.1g. 2.

3.

2010 Science Standards of Learning

Introduction ¹ Proficiency Advanced Mastery	GRADE/COURSE												
INFERRING	K	1	2	3	4	5	6	LS	PS	ES	BI	СН	PH
Inferences are made and conclusions are drawn about familiar objects and events. (1.1f)			1										
Conclusions are drawn. (2.1j)													
Inferences are made and conclusions are drawn. (3.1j)													
Predictions and inferences are made, and conclusions are drawn based on data from a variety of sources. (4.1e) (<i>Predicting</i>)*													
Inferences are made and conclusions are drawn. (5.1i)													
Conclusions are formed based on recorded quantitative and qualitative data. (BIO.1e) (<i>Analyzing Data</i>)													

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

	Introduction ¹	Proficiency	Advanced Mastery					(GRAD	DE/CC	OURS	E				
US	ING VARIABLES I	N EXPERIMENTA	TION	K	1	2	3	4	5	6	LS	PS	ES	BI	СН	PH
Sim	ple investigations and experir	nents are conducted to answ	ver questions. (1.1j)				1									
Con	ditions that influence a chang	e are identified and inference	ces are made. (2.1g)													
Inde	pendent and dependent varial	bles are identified. (4.1f)														
Con	stants in an experimental situ	ation are identified. (4.1g)														
Inde	pendent and dependent varial	bles are identified. (5.1e)														
Con	stants in an experimental situ	ation are identified. (5.1f)														
One	variable is manipulated over	trials. (6.1f)														
Sou	rces of experimental error are															
Dep	endent variables, independent	t variables, and constants ar	e identified. (LS.1f)													
Vari	ables are controlled to test hy	potheses, and trials are repe	eated. (LS.1g) (Hypothesizing)*													
Inde	pendent and dependent varial	bles, constants, controls, and	d repeated trials are identified. (PS.1f)													
Rese	earch methods are used to inv	estigate practical problems	and questions. (PS.1k)													
Vari	ables are manipulated with re	epeated trials. (ES.1e)														
Vari	ables are defined and investig	gations are designed to test l	hypotheses. (BIO.1c)													
Sou	rces of error inherent in exper	imental design are identifie	d and discussed. (BIO.1f)													
Desi	gnated laboratory techniques	(are implemented). (CH.1a)													
(Ver usin	<i>ifiable observations and data</i> g repeated trials. (CH.1d)	manipulation of multiple variables,														
The	limitations of the experiment	al apparatus and design are	recognized. (PH.1d)													

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

*When a skill is repeated, the additional location is indicated by parentheses.

Virginia Department of Education

	Introduction ¹	Advanced Mastery					(GRAD	DE/CC	OURS	E					
INT	ERPRTING, ANALYZ	ZING, AND EVAL	UATING DATA	K	1	2	3	4	5	6	LS	PS	ES	BI	CH	PH
Unus	ual or unexpected results in an ac	ctivity are recognized. (K.1	j)				1									
Obser pictur	rvations and data are recorded, and res, written statements, and numbers	nalyzed, and communicated bers. (1.1i) (<i>Communicating</i>	l orally and with simple graphs,													
Data	are analyzed, and unexpected or	unusual quantitative data a	re recognized. (2.1i)													
Unex	pected or unusual quantitative da	ata are recognized. (3.1i)														
Nume	erical data that are contradictory	or unusual in experimental	results are recognized. (4.1j)													
Data and n	are collected, recorded, analyzed netric measurements. (5.1g) (Cor	l, and communicated using <i>nmunicating</i>)	proper graphical representations													
Data (Com	are analyzed and communicated <i>municating</i>)	tation. (6.1h)														
Patter	ns are identified in data and are	LS.li)														
Data of tria	tables showing the independent a ils are constructed and interprete	and dependent variables, de	rived quantities, and the number													
Data data s (<i>Com</i>	tables for descriptive statistics sheet, and the number of repeated the <i>municating</i>)	rials are constructed and int	central tendency, the range of the erpreted. (PS.1h)													
Frequ (PS.1	ency distributions, scatterplots, 1 i) (<i>Communicating</i>)	line plots, and histograms a	re constructed and interpreted.													
Valid	conclusions are made after analy	yzing data. (PS.1j)														
Techn analy (ES.1	nologies, including computers, p ze, and report data and to demon b) (<i>Communicating, Modeling</i>)	robeware, and geospatial te strate concepts and simulat	chnologies, are used to collect, e experimental conditions.										2			
Scale interp	s, diagrams, charts, graphs, table preted. (ES.1c) (<i>Communicating</i>)	es, imagery, models, and pro	ofiles are constructed and										3			
Graph	ning and arithmetic calculations	lysis. (BIO.1d)														
Conc	lusions are formed based on reco	tative data. (BIO.1e) (<i>Inferring</i>)														
Valid	ity of data is determined. (BIO.1															
Appro gather exper	opriate technology including con ring and analyzing data, commu- imental conditions. (BIO.1i) (Co	nputers, graphing calculator nicating results, modeling c ommunicating, Modeling)	rs, and probeware, is used for oncepts, and simulating													

INTERPRTING, ANALYZING, AND EVALUATING DATA K 1 2 3 4 5 6 LS PS ES BI C Alternative scientific explanations and models are recognized and analyzed. (BIO.11) Image: Comparison of the scientific explanation of the scientific explanation of the scientific explanation, and analysis of data through repeated trials. (CH.1e) Image: Comparison of the scientific explanation of the scientific expla	
Alternative scientific explanations and models are recognized and analyzed. (BIO.11) Image: Comparison of the intervention of the interventi	'H PH
Accurate recording, organization, and analysis of data through repeated trials. (CH.1e) Image: Communicating (Communicating) Mathematical and procedural error analysis (<i>is performed</i>). (CH.1f) Image: Charlen (CH.1f) Mathematical manipulations including SI units, scientific notation, linear equations, graphing, ratio and proportion, significant digits, and dimensional analysis. (CH.1g) (<i>Measuring</i>) Image: CH.1g(Measuring) Models and simulations are used to visualize and explain phenomena, to make predictions from humathered to interment date. (CH.1g(Measuring)) Image: CH.1g(Measuring)	
Mathematical and procedural error analysis (<i>is performed</i>). (CH.1f) Image: CH.1g (CH.1f) Mathematical manipulations including SI units, scientific notation, linear equations, graphing, ratio and proportion, significant digits, and dimensional analysis. (CH.1g) (<i>Measuring</i>) Image: CH.1g (<i>Measuring</i>) Models and simulations are used to visualize and explain phenomena, to make predictions from humotherapy and to interment data. (CH.1g) (<i>Measuring</i>) Image: CH.1g (<i>Measuring</i>)	
Mathematical manipulations including SI units, scientific notation, linear equations, graphing, ratio and proportion, significant digits, and dimensional analysis. (CH.1g) (Measuring) Models and simulations are used to visualize and explain phenomena, to make predictions from burgetbases and to interment date. (DH 16) (Measuring)	
Models and simulations are used to visualize and explain phenomena, to make predictions from	
nypotneses, and to interpret data. (rn.11) (<i>modeling</i>)	
Appropriate technology, including computers, graphing calculators, and probeware, is used for gathering and analyzing data and communicating results. (PH.1g) (<i>Communicating</i>)	
Relationships between physical quantities are determined using the shape of a curve passing through experimentally obtained data. (PH.2b)	
The slope of a linear relationship is calculated and includes appropriate units. (PH.2c)	
Interpolated, and analyzed trends are used to make predictions. (PH.2d)	
Situations with vector quantities are analyzed utilizing trigonometric or graphical methods. (PH.2e)	

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

2. The Computer Technology SOL introduces the use of hand-held technologies in the middle grades, e.g., C/T 6-8.6 and 6-8.8. Geospatial technology is formally introduced in Earth science.

3. Imagery and profiles are introduced in this segment.

	Introduction ¹ Proficiency Advanced Mastery						GRADE/COURSE										
DESIGNING, CONSTRUCTING, AND INTERPRETING MODELS							3	4	5	6	LS	PS	ES	BI	CH	PH	
Simple physical models are designed and constructed to clarify explanations and show relationships. (2.11)																	
Models are designed and built. (3.11)																	
Models are constructed to clarify explanations, demonstrate relationships, and solve needs. (4.11)																	
Models are constructed to clarify explanations, demonstrate relationships, and solve needs. (5.1j)																	
Scale models are used to estimate distance, volume, and quantity. (6.1c)																	
Models and simulations are designed and used to illustrate and explain phenomena and systems. (6.1i)																	
Models and simulations are constructed and used to illustrate and explain phenomena. (LS.1d)																	
Models and simulations are constructed and used to illustrate and explain phenomena. (PS.1m)																	
Technologies, including computers, probeware, and geospatial technologies, are used to collect, analyze, and report data and to demonstrate concepts and simulate experimental conditions. (ES.1b) (<i>Communicating, Analyzing Data</i>)*																	
Maps and globes are read and interpreted, including location by latitude and longitude. (ES.1d)																	
Appropriate technology including computers, graphing calculators, and probeware, is used for gathering and analyzing data, communicating results, modeling concepts, and simulating experimental conditions. (BIO.1i) (<i>Communicating, Analyzing Data</i>)														2			
Alternative scientific explanations and models are recognized and analyzed. (BIO.11) (Analyzing Data)																	
Use of appropriate technology including computers, graphing calculators, and probeware, for gathering data, communicating results, and using simulations to model concepts. (CH.1h) (<i>Communicating</i>)																	
Models and simulations are used to visualize and explain phenomena, to make predictions from hypotheses, and to interpret data. (PH.1f) (<i>Analyzing Data</i>)																	

1. Proficient performance on an introduced skill in routine classroom tasks and performances is expected by the end of grade-level/course instruction unless indicated by multiple introductory year blocks.

2. The Computer Technology SOL introduces the use of hand-held technologies in the middle grades, e.g., C/T 6-8.6 and 6-8.8.